
TINE VIDEO SYSTEM – A MODULAR, WELL-DEFINED, COMPON ENT-
BASED AND INTEROPERABLE TV SYSTEM UNDERGOING A REDE SIGN

Stefan Weisse (DV) # DESY, Germany

Abstract

In recent years, the usage of TV systems and optical
readout at accelerator facilities has constantly been in-
creasing. At the same time, the pace of vendor upgrades
of industrial vision hardware has hardly slackened. Be-
cause image readout hardware is required to meet special
criteria in accelerator physics, vastly different hardware
systems are frequently used side by side. Given such cir-
cumstances it is not surprising that the imaging software
needs to be changed, adapted and updated on a semi-
permanent basis. Current TV systems cannot cope very
well with rapid software and hardware changes. To im-
prove this, a redesign of the current TINE Video System,
initiated at PITZ, was undertaken. Efforts are focused on
an abstract, modular grabbing interface, dedicated soft-
ware components, a well-defined Video Transport Layer
and use of standard file formats where possible.

This paper will show current, planned and possible
software architectures as well as hardware support and
outlines perspectives for near and far future. Although the
current implementation is integrated into TINE control
system, it is modular enough so that integration into other
control systems can be considered.

INTRODUCTION
The origin of the outlined Video System and its prede-

cessor is the Photo Injector Test Facility Zeuthen (PITZ).
PITZ is a test facility at DESY for research and develop-
ment on laser driven electron sources for Free Electron
Lasers (FEL) and linear colliders [1, 2, 3]. The optimisa-
tion of an electron gun is only possible based on an ex-
tended diagnostic system including a video system. The
goal is to measure the electron beam position and the pro-
file of the beam at different places and by different diag-
nostic tools along the beam line [4, 5].

The currently installed albeit deprecated Video System
grew to its current powerful and versatile state by being
modified by constant adaptation to changed conditions
[6]. Due to this high rate of evolution, weak points of the
original design become more and more evident. Because
the world of IT and industrial vision is changing rapidly
and thus, constant software adaptation is necessary, work
is focused on modularity of the whole system and to re-
work proprietary developments by using industry stan-
dards or well-documented in-house developments.

Emphasis was especially put on

• an abstract, modular grabbing interface
• native JAVA support for client side

•

• flexible, open documented transport layer, support of

colour image transport
• component-based design
• use of standard image formats for permanent data

storage
• widely useable Application Programming Interface

(API) to support and encourage users of writing their
own clients and components

ABSTRACT, MODULAR GRABBING
INTERFACE

Over the years it was found out that support for only
one camera model cannot provide the various demands
regarding image quality, speed of acquisition or cost of
readout. For very special measurement demands very few
camera types are available on the world market at all, at
an exceptional price. A non-standard API is provided by
the manufacturer of the hardware. In contrast to that, for
simple monitoring consumer webcams are usually hard-
ware of choice. A standard API is used to access such
consumer hardware. Generally this does not allow fine-
tuning of the hardware but easy and quick integration,
sometimes finished within minutes.

Past showed that a variety of different camera types are
necessary to be integrated. To provide easy integration of
different type or models of camera (image readout) hard-
ware, an abstract software interface was designed. This
software interface is called Small Grabber Part (SGP).
The way to integrate a new camera is to change / rewrite
only certain source code parts of this SGP. All other ele-
ments of a complex Video System were and are designed
in a way that also this newly created SGP can interact
with them instantly. This scheme eases enhancement and
adaptation to future requirements that one cannot estimate
by now.

VIDEO TRANSPORT LAYER
In the past a proprietary interface was used for image

data transfer between server and client parts. This was
documented, but limited (only greyscale images, very
limited metadata). For the future this interface will only
be kept alive for interconnection to old clients.

For new developments a collaboration between
DOOCS and TINE [7] control systems at DESY was ini-
tiated to make it easier to exchange image data. The result
of this is on TINE side the data type CF_IMAGE that
consist of a fixed, well-defined header and variable image
bits. This data type is used as a standard method of ex-
changing image data across components of a complex --

stefan.weisse@desy.de

Video System. The perspective is to improve reuse of
software work. Parallel developments or reinvention of
the wheel are possible to avoid.

NATIVE JAVA SUPPORT AT CLIENT SIDE
For future accelerator consoles and GUI panels Java

has already been selected to be used as the programming
language and technology for client-side. This applies to
viewing as well as processing of image data. Java, in con-
trast to native binary code, significantly reduces execution
speed (and thus performance) of software. This is a com-
promise to provide platform independence. Live video
viewing and processing naturally requires strong per-
formance, difficult to provide under native Java.

Fig. 1: VideoApplication including TINE VideoBean

The TINE VideoBean, based on TINE AcopBean [8]

framework, is a software component for viewing of image
data (live as well as single images) and was designed and
created with performance in mind.

The results are satisfactory. Nevertheless, a native cli-
ent can use system resources much more efficiently –
with the trade-off of no longer being platform independ-
ent. It must be noted that no JNI was used and the whole
component was written in 100% pure Java. It provides:

• live image view, receiving video frames via TINE
• still image view
• image display enhancements like false colour modes

for luminosity data, histogram equalisation and
maintaining of aspect ratio

• optional so-called „on-screen-display“ of image
metadata

• image types supported: RGB colour images (24 bits
per pixel), greyscale images (8 up to 24 bits per
pixel), JPEG colour images, Huffman-compressed
greyscale images

LAYERED, COMPONENT-BASED
DESIGN

The past has shown that a heterogeneous video system
can be very complex. To tear down complexity it was
decided to split necessary functionality into smaller pieces
that are interconnected using the video transport layer
mentioned above. Under ideal circumstances, each com-
ponent should only fulfil a single operation on the data
and then pass it along.

One possible consideration is a breakdown of the Video
System in the already mentioned Small Grabber Part,
which does all hardware-dependent tasks of video read-
out, and a CoreProvider component, which takes the raw
data that is delivered by the Small Grabber Part and per-
forms software pre-processing of image data such as ori-
entation change, scaling, compression, software binning
etc. Other imaginable components could be a former
Video System compatibility layer to provide video images
for already existing software, a component in order to
save short mpeg movies to disk, an HTTP access compo-
nent that could deliver video images to web browsers, a
DAQ storage transformer component…

Layer-based design is planned to be used for complex
control and readout schematics. The aim is to keep core
(ground bricks) components easy and add more complex
functionality by upper layer(s). Examples are the setting
of defined readout setups for dedicated measurement pur-
poses and parallel matching setup of interchangeable
lenses (remote zoom factor change) and to apply in paral-
lel the matching scale factor (changes with zoom) to each
image.

STANDARD IMAGE FORMATS
As default formats for permanent data storage of im-

ages and image sequences PNG (for lossless storage) as
well as JPEG (for lossy storage) were preselected. Both
formats are capable of storing greyscale as well as colour
images and are widely used. For storing of image se-
quences it is planned to store single images in formats
JPEG or PNG plus an additional XML metadata file
which encodes the sequence order of these individual
files. Single files as well as XML metafile might be en-
capsulated into a ZIP archive to keep directories tidy.

USER LIBRARIES, API
Experience shows that even a designed-to-be-versatile

video system can never be flexible enough. In order to
give users the opportunity of enhancing the core system to
their very special needs, a multi-platform interface library
will be provided. It is foreseen that central functionality
and reusable algorithms on the inside are outsourced to
this library. Functionality moved there will still be refer-

enced in central parts of the Video System while seam-
lessly being available in source and binary form to users.
In addition, an API will be created that provides interac-
tion with the Video System in a simple way.

CURRENT STATUS
Certain Small-Grabber-Parts are nearly finished:
• PCVision analogue PCI framegrabber card
• Prosilica GigE/Vision Gigabit Ethernet cameras
• National Instruments IMAQ interface
• Microsoft Directshow API
• Animation file playback from disk

All implementations are (mainly due to API con-

straints) only available on Windows XP. The effort to
change the platform is considered to be little, source code
is written in a platform and compiler-independent fashion.
Support depends on a proper API and/or driver that must
be provided by a third party. In addition, implementation
has been started for JaiPulnix Gigabit Ethernet cameras
using JAI API.

The initial revision of the TINE VideoBean has been
finished. Small modifications might be necessary once the
final set of components will be released. Future efforts are
focused on implementing second-level functionality.

The CoreProvider component, which does software-
based adjustment of raw video images delivered by SGP
components, is under planning.

The VideoService component, an upper layer plus cen-
tral and very important component is designed at the mo-
ment.

NETWORK TRANSPORT, PROTOTYPE
IMPLEMENTATION RESULTS

In recent weeks, measurements were performed in or-
der to understand weak performance on network transport
level. In spite of a fast switched Gigabit Ethernet connec-
tion between two test PCs special care had to be taken to
provide high bandwidth data transfer. This incorporates
special TINE protocol configuration, special network
cards, special configuration of network stack etc. If every-
thing is working like a precisely adjusted clockwork, net-
work transfer speeds of up to 100 MB/s can be reached.

If compatibility on the network site is necessary, an
easy to provide general speed is about 15 MB/s. This per-
formance is certainly limited and thus, has a strong influ-
ence on component architecture as well as the possibility
of sending out live, uncompressed high resolution video
images.

In addition, estimates of possible frame rates were
done. If the 15 MB/s boundary was not crossed, there was
no problem of transferring up to 30 images per second
from one PC to the other. This is sufficient for the near
future, because for live view hardly more than 30 frames
per second are necessary.

A test setup to measure throughput of two Video Sys-
tem components on the same machine via shared memory

showed better results. A data rate of 80 MB/s or more can
easily be reached. The interconnection between Video
System components on the same machine exchanging
huge data sets is possible.

All measurements were done using Windows XP Pro-
fessional. Two PCs equipped with PCI-Express Gigabit
Ethernet network cards (1x Intel, 1x Broadcom) were
connected together using a switched environment.

PERSPECTIVE
The current effort focuses on getting the main compo-

nents up to production status in order to satisfy demands
from physics still due and to get feedback from real op-
eration. Afterwards there are already two camera models
of JAI/Pulnix awaiting proper integration. The implemen-
tation of standard formats for permanent data storage will
be started afterwards in connection with the creation of
general APIs for user demands. It is planned that algo-
rithms used in the components will be exported 1:1 to
C/C++ libraries so that the users can also benefit from
internal development and vice versa. The philosophy of
supporting an API on all used development environments
that users use will result in many secondary applications
and is meant to remove the workload from the core de-
veloper(s).

REFERENCES
[1] F. Stephan et al., “Photo Injector Test Facility under

 Construction at DESY”, FEL 2000, Durham, NC,
USA

[2] S. Rimjaem et al., “Status and Perspectives of the

PITZ Facility Upgrade”, FEL 2007, Novosibirsk,
Russia

[3] C. Boulware et al., “Latest Results at the Upgraded

PITZ Facility”, FEL 2008, Gyeongju, S. Korea

[4] Juergen Baehr et al., “Development of a TV Diagnos-

tic System for the Photo Injector Test Facility at
DESY Zeuthen”, FEL 2001, Darmstadt, Germany

[5] Juergen Baehr et al., “Diagnostics for the Photo In-

jector Test Facility at DESY Zeuthen”, DIPAC 2001,
Grenoble, France

[6] S. Weisse et al., „Status of a versatile Video System

at PITZ, DESY-2 and EMBL Hamburg“, ICALEPCS
2007, Knoxville, TN, USA

[7] TINE (Three-fold Integrated Network Environment)

website http://tine.desy.de

[8] J.Bobnar et al. "The ACOP Family of Beans: A

Framework Independent Approach", ICALEPCS
2007, Knoxville, TN, USA

